Copied to
clipboard

G = C24.427C23order 128 = 27

267th non-split extension by C24 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.427C23, C23.639C24, C22.3112- 1+4, C22.4122+ 1+4, (C2×C42).89C22, C23.183(C4○D4), (C22×C4).565C23, (C23×C4).481C22, C23.7Q8.68C2, C23.Q8.33C2, C23.8Q8.53C2, C23.11D4.41C2, C23.34D4.29C2, C23.83C2392C2, C24.C22.58C2, C23.65C23140C2, C23.81C23105C2, C23.63C23155C2, C2.91(C22.45C24), C2.C42.343C22, C2.90(C22.36C24), C2.25(C22.56C24), C2.83(C22.33C24), C2.91(C22.47C24), C2.48(C22.35C24), C2.90(C22.46C24), (C2×C4).441(C4○D4), (C2×C4⋊C4).450C22, C22.500(C2×C4○D4), (C2×C22⋊C4).60C22, SmallGroup(128,1471)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.427C23
C1C2C22C23C24C23×C4C23.34D4 — C24.427C23
C1C23 — C24.427C23
C1C23 — C24.427C23
C1C23 — C24.427C23

Generators and relations for C24.427C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=g2=1, d2=c, e2=ba=ab, f2=a, ac=ca, ede-1=ad=da, geg=ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, gdg=abd, fg=gf >

Subgroups: 372 in 196 conjugacy classes, 88 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C23.7Q8, C23.34D4, C23.8Q8, C23.63C23, C24.C22, C23.65C23, C23.Q8, C23.11D4, C23.81C23, C23.83C23, C24.427C23
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.33C24, C22.35C24, C22.36C24, C22.45C24, C22.46C24, C22.47C24, C22.56C24, C24.427C23

Smallest permutation representation of C24.427C23
On 64 points
Generators in S64
(1 11)(2 12)(3 9)(4 10)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 36)(6 33)(7 34)(8 35)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(37 61)(38 62)(39 63)(40 64)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 31 23 47)(2 60 24 20)(3 29 21 45)(4 58 22 18)(5 42 62 26)(6 15 63 55)(7 44 64 28)(8 13 61 53)(9 57 49 17)(10 30 50 46)(11 59 51 19)(12 32 52 48)(14 36 54 38)(16 34 56 40)(25 37 41 35)(27 39 43 33)
(1 15 11 43)(2 28 12 56)(3 13 9 41)(4 26 10 54)(5 32 38 60)(6 17 39 45)(7 30 40 58)(8 19 37 47)(14 22 42 50)(16 24 44 52)(18 64 46 34)(20 62 48 36)(21 53 49 25)(23 55 51 27)(29 63 57 33)(31 61 59 35)
(2 24)(4 22)(5 36)(6 39)(7 34)(8 37)(10 50)(12 52)(14 54)(16 56)(17 45)(18 30)(19 47)(20 32)(26 42)(28 44)(29 57)(31 59)(33 63)(35 61)(38 62)(40 64)(46 58)(48 60)

G:=sub<Sym(64)| (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,31,23,47)(2,60,24,20)(3,29,21,45)(4,58,22,18)(5,42,62,26)(6,15,63,55)(7,44,64,28)(8,13,61,53)(9,57,49,17)(10,30,50,46)(11,59,51,19)(12,32,52,48)(14,36,54,38)(16,34,56,40)(25,37,41,35)(27,39,43,33), (1,15,11,43)(2,28,12,56)(3,13,9,41)(4,26,10,54)(5,32,38,60)(6,17,39,45)(7,30,40,58)(8,19,37,47)(14,22,42,50)(16,24,44,52)(18,64,46,34)(20,62,48,36)(21,53,49,25)(23,55,51,27)(29,63,57,33)(31,61,59,35), (2,24)(4,22)(5,36)(6,39)(7,34)(8,37)(10,50)(12,52)(14,54)(16,56)(17,45)(18,30)(19,47)(20,32)(26,42)(28,44)(29,57)(31,59)(33,63)(35,61)(38,62)(40,64)(46,58)(48,60)>;

G:=Group( (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,31,23,47)(2,60,24,20)(3,29,21,45)(4,58,22,18)(5,42,62,26)(6,15,63,55)(7,44,64,28)(8,13,61,53)(9,57,49,17)(10,30,50,46)(11,59,51,19)(12,32,52,48)(14,36,54,38)(16,34,56,40)(25,37,41,35)(27,39,43,33), (1,15,11,43)(2,28,12,56)(3,13,9,41)(4,26,10,54)(5,32,38,60)(6,17,39,45)(7,30,40,58)(8,19,37,47)(14,22,42,50)(16,24,44,52)(18,64,46,34)(20,62,48,36)(21,53,49,25)(23,55,51,27)(29,63,57,33)(31,61,59,35), (2,24)(4,22)(5,36)(6,39)(7,34)(8,37)(10,50)(12,52)(14,54)(16,56)(17,45)(18,30)(19,47)(20,32)(26,42)(28,44)(29,57)(31,59)(33,63)(35,61)(38,62)(40,64)(46,58)(48,60) );

G=PermutationGroup([[(1,11),(2,12),(3,9),(4,10),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,36),(6,33),(7,34),(8,35),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(37,61),(38,62),(39,63),(40,64),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,31,23,47),(2,60,24,20),(3,29,21,45),(4,58,22,18),(5,42,62,26),(6,15,63,55),(7,44,64,28),(8,13,61,53),(9,57,49,17),(10,30,50,46),(11,59,51,19),(12,32,52,48),(14,36,54,38),(16,34,56,40),(25,37,41,35),(27,39,43,33)], [(1,15,11,43),(2,28,12,56),(3,13,9,41),(4,26,10,54),(5,32,38,60),(6,17,39,45),(7,30,40,58),(8,19,37,47),(14,22,42,50),(16,24,44,52),(18,64,46,34),(20,62,48,36),(21,53,49,25),(23,55,51,27),(29,63,57,33),(31,61,59,35)], [(2,24),(4,22),(5,36),(6,39),(7,34),(8,37),(10,50),(12,52),(14,54),(16,56),(17,45),(18,30),(19,47),(20,32),(26,42),(28,44),(29,57),(31,59),(33,63),(35,61),(38,62),(40,64),(46,58),(48,60)]])

32 conjugacy classes

class 1 2A···2G2H2I4A···4P4Q···4V
order12···2224···44···4
size11···1444···48···8

32 irreducible representations

dim111111111112244
type++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C4○D4C4○D42+ 1+42- 1+4
kernelC24.427C23C23.7Q8C23.34D4C23.8Q8C23.63C23C24.C22C23.65C23C23.Q8C23.11D4C23.81C23C23.83C23C2×C4C23C22C22
# reps111132111138422

Matrix representation of C24.427C23 in GL6(𝔽5)

100000
010000
004000
000400
000010
000001
,
100000
010000
001000
000100
000040
000004
,
400000
040000
001000
000100
000010
000001
,
300000
030000
001200
000400
000001
000010
,
010000
100000
004300
001100
000020
000002
,
400000
010000
003000
000300
000010
000004
,
100000
010000
004000
001100
000010
000004

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,2,4,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,4,1,0,0,0,0,3,1,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4] >;

C24.427C23 in GAP, Magma, Sage, TeX

C_2^4._{427}C_2^3
% in TeX

G:=Group("C2^4.427C2^3");
// GroupNames label

G:=SmallGroup(128,1471);
// by ID

G=gap.SmallGroup(128,1471);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,344,758,723,100,1571,346]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=g^2=1,d^2=c,e^2=b*a=a*b,f^2=a,a*c=c*a,e*d*e^-1=a*d=d*a,g*e*g=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g=a*b*d,f*g=g*f>;
// generators/relations

׿
×
𝔽